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Intrinsic complications in the analysis of optical-pump, terahertz probe experiments
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A general formalism is presented for the interpretation of experiments in which a laser pulse (or
pump pulse) creates charge carriers that are subsequently probed by a broadband THz pulse (or
probe pulse). The time-dependence of the sample properties is described in terms of the conductivity
σ(ω, τ ), where the dependence on frequency ω describes the intrinsic properties of the charge carriers
and the dependence on pump–probe delay τ describes their population dynamics. It is shown that
there are significant complications in obtaining this quantity from experimental data for τ values
comparable to the charge carrier response time. Also, in transient THz absorption experiments, fast
dynamics in the measured signals may be observed that do not necessarily reflect sample dynamics.
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I. INTRODUCTION

Terahertz (THz) spectroscopy involves radiation with
frequencies most often in the range 0.3–3 THz, corre-
sponding to wavelengths of 100 to 1000 µm, or photon en-
ergies of 1 to 10 meV. In this paper, we concentrate on the
use of THz spectroscopy to study the behavior of charge
carriers in the condensed phase. There are several advan-
tages of using THz radiation for that purpose. First, due
to the small photon energies, THz radiation is not likely
to excite electrons and holes. However, it can generate
an electrical current in a sample. Moreover, scattering of
charge carriers typically happen on a timescale of fem-
toseconds to picoseconds, which one can expect to see as
features in the absorption spectrum at THz frequencies.
Finally, it is possible to generate broadband THz pulses
with a duration of a few cycles, which has created the
possibility to do optical-pump, terahertz-probe (OPTP)
spectroscopy. For a comprehensive overview of the field
of THz spectroscopy, see Ref. 1, and, more focused on
OPTP spectroscopy, Ref. 2.

In an OPTP experiment, an ultrashort laser pulse ex-
cites a sample, typically creating or exciting charge car-
riers. Subsequently, these photoexcited charge carriers
are probed by a broadband pulse of terahertz radiation.
This is similar to more conventional optical pump–probe
spectroscopy, apart from the fact that it is possible to
measure the full time dependence of the electrical field
of the THz probe pulse, instead of only its energy or
energy spectrum. By means of Fourier analysis, the full
complex absorption spectrum can be obtained, which de-
scribes both amplitude change and the phase shift as a
function of frequency. This conveys more information
than the energy spectrum alone. Moreover, it is possi-
ble to observe dynamics occuring on a timescale as fast
as 0.1 ps even though the THz pulse has a duration of
several picoseconds.3–13 However, as we will show in this
paper, it is by no means trivial to relate the observed fast
dynamics in the signal to the underlying material prop-
erties such as the charge-carrier density and the single-
carrier response.

In a full OPTP experiment, the time profile E(t) of
a THz probe pulse that has passed through a sample is
measured as a function of pump–probe delay τ . A few
studies have treated the issue of interpreting such exper-
imental data from a theoretical point of view. Kindt
and Schmuttenmaer14 describe the response of polar
molecules in liquid solution in terms of the susceptibility
∆χ(t, τ). Also in terms of susceptibility is a study by
Nemec and co-workers,15 which proposes to describe the
sample properties in terms of ∆χ(ω, ω′), where both t
and τ are transformed to the frequency domains. How-
ever, it is much more intuitive to describe the charge
carrier response in a sample in terms of its frequency-
dependent electrical conductivity σ(ω) rather than the
susceptibility. Indeed, a number of experimental stud-
ies describe the sample in terms of σ(ω) in steady-state
conditions16,17 or in terms of σ(ω, τ) in combination with
photoexcitation.3,4,6,10,13 In an older theoretical study,
Vengurlekar and Jha18 describe the sample properties
with a time-dependent conductivity spectrum σ(τ, ω),
but they focus mostly on processes occurring in GaAs.

The aim of this paper is to provide a solid descrip-
tion of the optical pump–THz probe technique in terms
of a time- and frequency-dependent conductivity σ(τ, ω).
First, we will give a short introduction about the straight-
forward steady-state case. Then we will proceed with
introducing a mathematical formalism that is needed to
describe the interaction of a THz pulse with a sample that
has time-dependent properties in a meaningful manner.
With this formalism, we will consider the problem of ob-
taining those properties from experimental data. This
will turn out to be more complicated than previously as-
sumed.

II. MEASURING THE STEADY-STATE

CONDUCTIVITY

Similarly to other authors,3,5,9,10,13,16 we describe the
properties of the sample in terms of the complex con-
ductivity spectrum σ(ω), that relates the electric current
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FIG. 1: Definition of the experimental parameters in an
optical-pump, THz probe experiment. The sample is a slab
with thickness L, surrounded by media with refractive indexes
nA and nB at THz frequencies. The sample is excited by an
optical pulse, followed by a THz pulse E0(t) with a time de-
lay τ . After undergoing absorption by the excited sample, the
THz field amplitude changes to E(t).

density to an applied electric field with amplitude E0 at
frequency ω, according to

J(t) = <[σ(ω)E0e
−iωt]. (1)

A standard model for electrical conductivity is the Drude
model,19 in which charge carriers can move freely, al-
though their motion is subject to damping with a time
constant τD. This leads to the expression

σ(ω) =
σ0

1 − iωτD
, (2)

where σ0 depends, among other things, on the concen-
tration of charge carriers and their effective mass. Note
that the minus sign in the denominator of Eq. (2) is de-
pendent on the chosen sign convention for the exponent
in Eq. (1).

The conductivity of a sample can be obtained exper-
imentally by comparing the reference THz pulse field
E0(t) that passed through a non-excited or blanco sam-
ple to the field E(t) that passed through an excited sam-
ple. For given refractive indexes nA and nB of the sur-
rounding materials, and a sample thickness L as shown
in Fig. 1, it can be derived (see Appendix A) that

J(t) = −
ε0c(nA + nB)

L
[E(t) − E0(t)], (3)

where ε0 is the dielectric constant of vacuum and c the
speed of light. It can be interpreted as that the electric
current in the sample emits radiation that interferes with
the incoming radiation E0 that passes through the sam-
ple. This emitted radiation need not be in phase with
the incoming radiation: the sample can continue radiat-
ing after the THz pulse has passed through. Note that
this equation holds for thin samples; Appendix A also
discusses to what extent it may be applied to thick sam-
ples.

Having obtained J(t), we can define the Fourier oper-
ator

F{f(t)}(ω) ≡

∫

∞

−∞

f(t)eiωtdt, (4)

which we use to evaluate the frequency-domain conduc-
tivity

σ(ω) =
F{J(t)}(ω)

F{E0(t)}(ω)
, (5)

following its definition in Eq. (1). We have assumed that
the differential signal ∆E ≡ E − E0 is small compared
to E0. Also, we assumed that the conductivity is not
dependent on the depth in the sample. This assumption
is not correct if the conductivity is the result of an optical
excitation and the optical penetration is comparable to
or smaller than the sample thickness. In that case, the
true conductivity is a function σ(ω, z) of the depth z,
while the conductivity as evaluated above is the average,

σ(ω) =

∫ L

0

σ(ω, z)dz. (6)

We would like to stress that the main point of this paper
is to show how a time-dependent conductivity fundamen-
tally affects the measured signals, even if complications
such as sample size are ignored.

III. FORMALISM FOR TIME-DEPENDENT

CONDUCTIVITY

In an optical-pump, terahertz probe experiment, an
ultrashort optical pulse generates charge carriers, which
subsequently disappear due to processes such as recom-
bination and trapping. The THz probe, that passes
through the sample at a time delay τ is affected by the
charge carriers. The aim of such an experiments is to ob-
tain a conductivity spectrum σ(ω, τ) as a function of time
τ after excitation. By choosing this form, one implicitly
assumes that the measured conductivity consists of the
summed contributions of various charge carrier species,
each with a number density nk and single-particle con-
ductivity ςk(ω), or

σ(ω, τ) = n1(τ)ς1(ω) + n2(τ)ς2(ω) + · · · . (7)

This is analogous to the case in transient-absorption
spectroscopy, where the absorbance change can be writ-
ten as the sum of contributions by various species. How-
ever, this analogy is far from complete. The charge car-
riers may be generated and recombine within a fraction
of a picosecond, i.e., a fraction of an oscillation period at
1 THz. Does it make sense to define the conductivity at
1 THz for such a short-lived species? The answer is yes,
but only if the concept of conductivity is interpreted in
a strictly defined manner, as we will show now.

First, we realize that the conductivity spectrum is the
Fourier transform of the the impulse response current
density, i.e. the current density that would result from
a δ-pulsed THz field, and that can be split further into
a charge carrier density N and a single-particle impulse
response j0(t). In the Drude model, j0(t) is an expo-
nentially decaying function. (Note that this means that
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FIG. 2: The single-particle current response j0 and charge
carrier density N for an excitation pulse at time −τ and a
THz δ-pulse at time t′.

the sample response continues even when the THz pulse
has already passed through.) We assume a δ-pulsed THz
field (we will generalize for arbitrary THz pulse shapes
later on) at time t′ and an excitation pulse at time −τ .
The charge carrier density at time t is given by N(t + τ)
and the single-particle current by j0(t − t′), as shown in
Fig. 2.

One might now write the total current after a THz δ-
pulse as j(t, t′, τ) = N(t + τ)j0(t− t′), such that the cur-
rent decreases due to both the intrinsic properties of the
charge carrier and the decreasing population. However,
charge carriers that are created at t > t′, for example if
the excitation pulse appears after the THz δ-pulse, will
not contribute to an increasing current since they never
felt the driving electrical field at t′. Imagine, for exam-
ple, that there is only one free electron in the sample
that is accellerated by the THz pulse and thus carries a
small current. If, directly after the THz pulse, 1015 new
charge carriers are created, the current will of course not
increase with a factor 1015, but will rather still be car-
ried by the original one electron. Hence, a decrease in
N for t > t′ should decrease the current, while an in-
crease in N should have no effect at all. A consistent
description requires elaborate bookkeeping of which part
of the density N(t) was already present at t = t′, and
which part was created later on. Obviously, this is in-
convenient. However, this description may be used if no
new charge carriers are created for t > t′.

A better way to describe the current, still assuming
a THz δ pulse at t = t′, is to incorporate the decay
in population into the single-particle impulse response.
This means that we no longer make a mathemematical
distinction between the two effects that lead to a de-
caying electrical current, one being friction acting on the
charge-carrier motion and the other being the charge car-
riers disappearing alltogether due to, e.g., electron–hole
recombination. Hence, we define a new single-particle
impulse response

̂ 0(t) = j0(t)p(t), (8)

where p(t) is the probability that a charge carrier disap-
pears within a time t. For example, j0(t) ∝ exp(−t/τD)
and p(t) = exp(−t/τR), where τD and τR are the Drude
damping time and the charge-carrier recombination time,
respectively. Now, the current response after a THz δ

pulse at t = t′ is given by

j(t, t′, τ) = N(t′ + τ )̂ 0(t − t′), (9)

regardless of whether N(t) increases or decreases with
time.

Summarizing, there are two ways to view conductiv-
ity, the intrinsic-conductivity picture and the conductiv-

ity-with-population picture, in terms of j0(t) and ̂ 0(t),
respectively, or in the frequency domain,

ς(ω) ≡ F{j0(t)}(ω), (10a)

ς̂(ω) ≡ F{̂ 0(t)}(ω). (10b)

Only the conductivity-with-population picture can ad-
equately describe systems with a growing charge carrier
density. The reason that we mention both is that in pub-
lished time-resolved THz conductivity studies, the intrin-
sic-conductivity picture seems to be assumed implicitly.
Moreover, as we will see, the latter has certain advan-
tages when experimental data is analyzed.

In an experiment, the THz pulse is not a δ-pulse but
rather a time-varying field E0(t), which can be several
picoseconds in duration. We can, in either the intrin-
sic-conductivity or the conductivity-with-population pic-
ture, write the total current J as a convolution

J(t, τ) = N(t + τ)[E0(t) ∗ j0(t)], (11a)

J(t, τ) = [E0(t)N(t + τ)] ∗ ̂ 0(t). (11b)

Due to the complications discussed above, Eq. (11a) is
only correct if τ � 0, i.e. there is no overlap between
the pump and the THz pulse (� indicates that the dif-
ference should be larger than the durations of the pump
and probe pulses). Finally, we remark that we assume
that there is only one charge-carrier species. However,
the equations can easily be generalized for an arbitrary
number of species.

IV. OBTAINING TIME-VARYING

CONDUCTIVITY FROM EXPERIMENTS

In an experiment, the current density J(t, τ) can be
obtained directly through Eq. (3), and Eqs. (11a) and
(11b) show how this measurable quantity is related to
the unknown N and ̂ 0 and the known THz pulse E0. In
the remainder of this section, we will try to transform the
measured quantity J into a quantity that is more directly
related to the physically relevant properties N and ̂ 0. In
the time-varying case, this is a bit more involved than in
the steady-state case [Eq. (5)]. The first step is to apply
the time-shift operation

JT(t, τ) ≡ J(t, τ − t), (12)

which means that for every t, JT(t, τ) represents the cur-
rent in the sample at a delay τ after excitation, instead
of the current at a delay t + τ . This transformation of
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experimental data was introduced by Beard et al.4 By
writing out the convolutions in Eqs. (11) and applying
this time-shift transformation, we obtain

JT(t, τ) = N(τ)[E0(t) ∗ j0(t)], (13a)

JT(t, τ) = E0(t) ∗ [N(τ − t)̂ 0(t)]. (13b)

(Note that one should correct E(t) and E0(t) for the
frequency response of the THz detection scheme before
applying this time shift.4) Now we can calculate the ‘qua-
siconductivity’

S̃T(ω, τ) ≡
F{JT(t)}(ω)

F{E0(t)}(ω)
. (14)

We remind the reader that S̃T is a quantity that can be
calculated from experimental data, while N and ς̂ are yet
unknown. Applied on the intrinsic-conductivity picture
[Eq. (13a)], one would believe that

S̃T(ω, τ)
?
= N(τ)ς(ω), (15)

i.e. that the quasiconductivity represents the desired con-
ductivity σ(ω, τ). However, with the time-shift transfor-
mation [Eq. (12)], the condition τ � 0 for which the
intrinsic-conductivity picture is applicable changes into
τ − t � 0. This new condition is much more restrictive
than the old one. If we define the current impulse re-
sponse time Tcir such that j0(t) = 0 for t > Tcir, it can

be shown that the quasiconductivity S̃T(ω, τ) is equiva-
lent to the conductivity σ(ω, τ) only if

τ > Tcir. (16)

We now consider the conductivity-with-population pic-
ture, which does not have restrictions such as in Eq. (16).
Here, we can safely write the quasiconductivity as

S̃T(ω, τ) = F{N(τ − t)̂ 0}

= F{N(τ − t)} ∗ ς̂(ω), (17)

which is independent of the THz pulse shape E0(t), but
does not have a straightforward physical meaning such as
Eq. (7). In order to obtain the ‘true’ conductivity σ̂(ω, τ)
in this picture, we must apply a number of additional
transformations,

ST(t, τ) ≡ F−1{S̃T(ω, τ)}(t) = N(τ − t)̂ 0(t) (18)

S(t, τ) ≡ ST(t, τ + t) = N(τ )̂ 0(t) (19)

S̃(ω, τ) ≡ F{S(t, τ)}(ω) = N(τ)ς̂(ω). (20)

Clearly, in the conductivity-with-population picture,

σ̂(ω, τ) = S̃(ω, τ). (21)

However, there is a catch, which becomes more obvious
from the expansion

S̃(ω, τ) =

1

2π

∫

∞

−∞

dω′

∫

∞

−∞

dτ ′ ei(ω−ω
′)(τ ′

−τ)S̃T(ω′, τ ′) (22)
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FIG. 3: Model of σ̂(ω, τ ) (in arbitrary units) used for the
simulations, here with Drude time constant τ̂D = 0.8 ps and
population relaxation time τR = 5 ps. Shown are the real
and imaginary components, on the left-hand side for various
values of τ and on the right-hand side for various values of
ω/2π.

of Eqs. (18)–(20), which shows that in order to evaluate

S̃(ω, τ) at any particular frequency ω and pump–probe

delay τ , one needs full knowledge of S̃T(ω, τ) at all other
frequencies and delays. Because of the limited band-
width of the THz pulse, this is generally not the case,
since Eq. (14) is undefined for E0(ω) = 0. In the next
section, we will test how this limitation, and the limita-
tion [Eq. (16)] of the intrinsic-conductivity picture would
affect the analysis of experimental data under various re-
alistic conditions.

V. SIMULATIONS

Although we have mentioned some possible complica-
tions in evaluating the time-dependent conductivity from
an experiment, the reverse is not true. One can simu-
late an experiment from a known model in the conduc-
tivity-with-population picture by going backwards from
Eq. (21); one only needs to know the shape E0(t) of the
THz pulse. As a test case, we used the Drude model
[Eq. (2)], with a number density N(τ) that is created
rapidly, followed by an exponential decay due to recom-
bination with a time constant τR; furthermore we assume
that the charge carriers are created instantaneously by
an excitation pulse with an FWHM of 0.2 ps. The time
constant τ̂D is in the conductivity-with-population pic-
ture, which relates to the intrinsic-conductivity picture
as τ̂−1

D = τ−1
D + τ−1

R . Figure 3 shows the model for the
conductivity σ̂(ω, τ) on which the simulations are based.
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FIG. 4: Simulation of a measurement of the differential sig-
nal ∆E = E(t, τ ) − E0(t) with the parameters as in Fig. 3.
Note that ∆E is a measure for the current density J in the
sample. Upper panel : the simulated differential signals for
various values of the pump–probe delay τ . The small pulse
shapes indicate the time overlap between the pump pulse and
the THz pulse around t = −τ . Only the part of the THz pulse
with t > −τ is affected by the pump pulse. Lower panel : dif-
ferential signals taken at various t values as a function of τ .
The time-shift transformation [Eq. (12)] amounts to aligning
the curves in the lower panel. Note the non-exponential decay
of the signals for τ < 2 ps; the dotted curve is an exponential
function with a time constant of 5 ps.

A. Simulation of time-domain data

First, we simulated an experiment on a sample which
has a time-dependent conductivity as shown in Fig. 3,
yielding the simulated measurement shown in Fig. 4. As
expected, only the part of the THz pulse that passed
through the sample after the pump pulse is affected. In a
number of publications, not the full two-dimensional sig-
nal ∆E(t, τ) is measured, but rather the one-dimensional
signal ∆E(τ) at a fixed gate delay t.7,8,11,20,21 Examples
of such signals are shown in the bottom panel. Concen-
trating on the curve for t = 0 ps, corresponding to the
main peak of the THz pulse, we observe that the signal
∆E(t, τ) decays exponentially for τ > 2 ps, while the de-
cay is strongly non-exponential for τ < 2 ps, even though
the model exclusively deals with exponentially decaying
populations and currents.

The cause for this deviation is that for τ < 2 ps, the
excitation pulse overlaps with an earlier part of the THz
pulse. This earlier part of the pulse, with a negative
amplitude, leads to a negative response which persists
for some time and partially cancels the positive response
from the central peak of the THz pulse. As can be ex-
pected, the non-exponential behavior turns out to be
strongly dependent on the THz pulse shape (data not
shown). Also, this effect is stronger for larger values of

τD in the model: a long-lived impulse response current
̂ 0(t) means that the electrical field in the early parts of
the THz pulse has a larger influence on the signal later
on. This simulation clearly indicates that one must be
very careful when interpreting fixed-t traces for τ values
which correspond to time overlap with earlier parts of
the THz pulse.

If one chooses to use the one-dimensional type of mea-
surements as discussed here, it is recommended that one
does not use pulses generated by optical rectification,
since these typically start with a long negative prepulse
followed by a shorter main pulse. A better choice would
be to use pulses generated by photoconductive anten-
nas, which start with a short high-amplitude pulse, fol-
lowed by a slow negative tail. Since this pulse shape does
not have a negative ‘head’, the artifacts discussed above
would be much smaller.

B. Evaluation of analysis methods

In this section, we will attempt to extract the quasi-
conductivity S̃T(ω, τ) and conductivity-with-population

conductivity S̃(ω, τ) from the simulated experimental
data shown in Fig. 4. We will compare these quanti-
ties to the model in Fig. 3 on which the simulations were
based.

First we will consider the quasiconductivity S̃T(ω, τ).
We mentioned in Section IV that this quantity [see
Eq. (14)] represents the conductivity in the intrinsic-
conductivity picture, but only under the condition in
Eq. (16). Figure 5 shows what happens if it is evaluated
from the simulated measurement in Fig. 4. As can be ex-
pected from Eq. (17), there is little resemblance between

the model in Fig. 3 and S̃T(ω, τ). If one were to interpret
this quantity as the time-dependent conductivity σ(ω, τ),
one might be mislead into believing that photoexcitation
leads to complicated dynamics in the sample. However,
we note that for τ ≥ 5 ps, there is reasonable similarity
between the underlying model and the quasiconductivity
S̃T(ω, τ), because the condition in Eq. (16) is met. We
can see this in the decay of the signal in the upper panel
in Fig. 4, which has mostly decayed for t > 5 ps.

In this simulation, we assumed that τD = 0.8 ps,
which resulted in a current impulse response duration
Tcir ≈ 5τD. We can compare this to measured values in
other studies. In doped silicon, τD ≈ 0.4 ps,16 meaning
Tcir ≈ 2.5 ps. In nanocrystalline TiO2, a non-Drude cur-
rent impulse response function was shown13 that would
require τ > 0.4 ps. In bulk GaAs, a modified-Drude
model had a time constant τD ≈ 0.16 ps,4 which requires
τ > 1 ps. One needs to be very careful in the evaluation
of the conductivity within a time Tcir after excitation.

Now we will consider the conductivity-with-popula-
tion conductivity S̃(ω, τ), which can be evaluated from
the quasiconductivity. Although the latter has no direct
physical meaning, it can be evaluated directly from ex-
perimental data and it is indeed independent of the shape
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FIG. 5: The real and imaginary components of the quasicon-
ductivity S̃T(ω, τ ) [Eq. (14)] for the model in Fig. 3. Clearly,
as could be expected, there is little resemblance between this
quantity and the model σ̂(ω, τ ) for pump–probe delays τ be-
low 5 ps. The apparent dynamics are artifacts inherent to
the definition of S̃T. Note that in a realistic THz experiment,
the frequency range below 0.2 THz, left of the vertical lines,
would not be available.

of the THz pulses (simulations not shown), which means
that it only depends on the properties of the charge car-
riers in the sample. Due to the bandwidth of the THz
pulses, S̃T is only known for a limited frequency range
[see Eq. (14)]. In order to evaluate S̃, we must somehow
guess the unknown frequency components in the qua-
siconductivity S̃T. As a first test, we assumed that S̃
was known for the frequency range of 0–3 THz, which
we extrapolated to higher frequencies with the power
laws ω−2 for the real part and ω−1 for the imaginary
part. These power laws correspond to the behavior of
the Drude model in Eq. (2). As can be seen from the
curves in Fig. 5, this extrapolation is not likely to be
very accurate. However, it is a better option than simply
padding with zeroes. The result is shown in Fig. 6 and
closely resembles the underlying model in Fig. 3. It turns
out that missing high-frequency data has a minor impact
on the reconstruction.

In a realistic THz experiment, the bandwidth is lim-
ited at both the higher and the lower frequencies. For
THz pulses generated and detected in ZnTe crystals,3 a
typical range is 0.2–2 THz. From a glance at Fig. 5, it
will be clear that extrapolating to lower frequencies is
not trivial. We chose to pad the lower frequencies with
a constant value. Figure 7 shows the result of convert-
ing the extrapolated quasiconductivity S̃T(ω, τ) data to

S̃(ω, τ). Clearly, the missing low-frequency data has a
huge impact on the result, although it still bears more
resemblance to the underlying model in Fig. 3 than the
quasiconductivity S̃T in Fig. 5. Especially the frequency
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FIG. 6: The real and imaginary components of S̃(ω, τ )

[Eq. (20)], again for the model in Fig. 3. In calculating S̃

from S̃T, only the frequency range 0–3 THz was used. Higher
frequencies were extrapolated as a power law. This recon-
structed data closely resembles the underlying model in Fig. 3.

2.0 THz
1.0 THz
0.5 THz
0.2 THz
0.0 THz

2.0 THz
1.0 THz
0.5 THz
0.2 THz
0.0 THz

Pump-probe delay τ (ps)
121086420-2

10 ps
5.0 ps
1.5 ps
0.5 ps
0.2 ps

ℜ
[S̃

(ω
,
τ)

]

1.0

0.8

0.6

0.4

0.2

0.0

10 ps
5.0 ps
1.5 ps
0.5 ps
0.2 ps

Frequency (THz)

ℑ
[S̃

(ω
,
τ)

]

21.510.50

0.5

0.4

0.3

0.2

0.1

0.0

FIG. 7: As in Fig. 6, but based on the quasiconductivity
in the frequency range 0.2–2 THz. The missing low- and
high-frequency data were extrapolated by a constant and a
power law, respectively. Due to the missing low-frequency
data, this reconstruction deviates significantly from the un-
derlying model in Fig. 3.

dependence matches reasonably well; the largest differ-
ences are found in the τ -dependence. Other extrapola-
tion methods (straight line, smooth transition to zero at
ω = 0, or padding with zeroes) gave similar or worse
results.

Summarizing, the quasiconductivity S̃T(ω, τ) can be
evaluated from the experimental data and represents the
conductivity σ(ω, τ) in the intrinsic-conductivity picture,
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but only for pump–probe delays τ that are much larger
than the current impulse response time. The quantity
S̃(ω, τ) would represent the conductivity σ̂ in the con-
ductivity-with-population picture, but can generally not
be evaluated from experimental data due to the limited
bandwidth of THz pulses. However, it is possible to cal-
culate the measurable quantity S̃T(ω, τ) from a given
model σ̂(ω, τ). Hence, if a reasonable model for σ̂ ex-
ists, it is in principle straightforward to fit this model to
the experimental data.

VI. CONCLUSION

We have presented a formalism which can be used
to describe optical pump, THz probe measurements
on systems in which the frequency-domain conductivity
changes rapidly with time τ after optical excitation. In
this description, we use the conductivity σ̂(ω, τ), in the
so-called conductivity-with-population picture. In its fre-
quency dependence, it incorporates both the kinetics of
the response of the charge carriers to an electrical field
and the recombination dynamics which leads to charge
carriers disappearing from the system. Any conductivity
model that can be expressed in the form σ̂(ω, τ) can be
tested against experimental data.

In the alternative intrinsic-conductivity picture, the
frequency dependence of the conductivity σ(ω, τ) does
not incorporate population dynamics. It can be recon-
structed from experimental data, but only for delay val-
ues τ that are large compared to the charge-carrier re-
sponse time. For smaller delay values, the analysis cre-
ates artifacts which could be erroneously interpreted as
dynamics in the sample.

Even if one is not interested in measuring a frequency-
resolved conductivity, one needs to be careful when inter-
preting transmittance changes in the sample as measured
by the central peak of a THz pulse. The exact time profile
of the THz pulse can strongly affect such measurements,
again especially when the charge-carrier response time is
long compared to the duration of the central peak in the
THz pulse.
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APPENDIX A: DERIVATION OF CURRENT

FROM THE MEASURED FIELDS

In this appendix, we will derive Eq. (3). Consider the
geometry and quantities in Fig. 8. For this geometry, the
Maxwell equations can be written as

εrel(z)
∂2

∂t2
E(z, t) + c2 ∂2

∂z2
E(z, t) =

1

ε0
J(z, t), (A1)

z

Etr � z � t �

Er � z � t �

Ein � z � t �

L

0

J � t �

nA nBn0

FIG. 8: Geometry of a sample, with an incoming plane-wave
THz pulse Ein, a reflected pulse Er, and a transmitted pulse
Etr. The field of the THz pulse creates a current density J
in a thin sample with thickness L and refractive index n0

(only relevant for thick samples). The sample is surrounded
by materials a and b with refractive indices nA and nB . The
spatial coordinate is z and the sample is located at z = 0.

where εrel is the relative dielectric constant of the
medium. Notice that the analysis of pump–probe mea-
surements is greatly complicated if reflections of the THz
pulse overlap with the main pulse. Since the refractive
index at THz frequencies typically is larger than at opti-
cal wavelengths, and one measures the field E instead of
the intensity (E2), a THz pulse that has been reflected
twice at the sample substrate boundaries usually has a
significant amplitude. Therefore, it is recommended that
samples and sample substrates are either thick enough
(L > 1 mm) to separate the reflections in time, or so thin
that the reflection completely overlaps (L < 10 µm). We
will discuss these two cases separately.

1. Thin samples

In the limit for L → 0, we can write

J(z, t) = L J(t)δ(z). (A2)

We assume that in the mediums surrounding the sam-
ple, the refractive index is frequency-independent and
the THz absorption can be neglected, i.e. εrel = n2.
This means that the THz pulses can be described as
wave packets, i.e., Ein(z, t) = Ain(t − znA/c), Er(z, t) =
Ar(t + znA/c), and Etr(z, t) = Atr(t − znB/c), where
Ain(t) defines the incoming pulse shape and Ar(t) and
Atr(t) are not yet known. Hence, we write

E(z, t) =

{

Ain(t − znA/c) + Ar(t + znA/c) (z < 0)
Atr(t − znB/c) (z > 0)

.

(A3)
By substituting Eqs. (A2) and (A3) into Eq. (A1), and
the boundary condition that E is continuous at z = 0,
we can obtain

J(t) =
ε0c

L
[2nAAin(t) − (nA + nB)Atr(t)]. (A4)

In the derivation, we have assumed that J(−∞) = 0 and
Ain(−∞) = 0, i.e., there was neither a current nor a field
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present before the THz pulse arrived. In a THz transmit-
tance measurement, we compare Atr with a conductive
sample (J 6= 0) to the field A0

tr with a nonconductive
sample (J = 0). Hence,

J(t) =
ε0c(nA + nB)

L
[A0

tr(t) − Atr(t)], (A5)

which is equivalent to Eq. (3).

2. Thick samples

In thick samples, the index of refraction n at depth z
in the sample is given by

n2 = n2
0

(

1 + i
σ(z)

ωε0n2
0

)

, (A6)

where n0 is refractive index in the absence of charge car-
riers. We use the sign conventions imposed by Eq. (1).
If we assume that the second term is small, and we ig-
nore multiple reflections, but take absorption losses into
account, as well as reflection losses at the sample bound-
aries, then we can derive that

Atr

A0
tr

− 1 =
1

2ωε0n2
0

(

−
n0ω

c

∫ L

0

σ(z) dz + iR

)

+ O(σ2),

(A7)
where the first term represents the absorption and

R = σ(0)

(

1

2
−

n0

n0 + nA

)

+ σ(L)

(

1

2
−

n0

n0 + nB

)

(A8)

represents the reflection losses at the sample boundaries.
(Reflection losses due to variations of σ(z) within the
sample are O(σ2) and can be ignored).

If we wish to calculate the current from a measurement,
we need to make assumptions about the z dependence of
σ(z). For example, if there is no z dependence, then

Atr

A0
tr

− 1 =
σ

2ωε0n2
0

(

−
n0ωL

c
+ iR′

)

, (A9)

R′ = 1 −
n0

n0 + nA

−
n0

n0 + nB

. (A10)

If n0 = nA = nB and σ or if the sample is sufficiently
thick (e.g., 1 mm), we can approximate R ≈ 0 and obtain

J ≈ −
2ε0cn0

L
[A0

tr − Atr], (A11)

where we used J = σAin. This equation is very similar to
Eq. (3), but applies to a steady state. It can be applied to
a time-dependent conductivity, but only under the condi-
tion that the excitation pulse that creates charge carriers
has the same group velocity as the THz pulse. Under this
condition, the THz pulse will meet charge carriers that
all have the same age while it passes through the sample.
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